If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-64n+24=0
a = 10; b = -64; c = +24;
Δ = b2-4ac
Δ = -642-4·10·24
Δ = 3136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3136}=56$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-56}{2*10}=\frac{8}{20} =2/5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+56}{2*10}=\frac{120}{20} =6 $
| 7+2x*3=5 | | 5(3(x+4)-2(1-x))-x-35=14x+65 | | 2/3-1/4x=2/5 | | 3x+4*2=9.5 | | 2x-50°=160° | | 6/11=y/3 | | 4y-27=-y+3 | | Y=12+10i | | (-10+25)r=-165 | | 2=2d-4 | | 4(2y-1)+11=(3y-2)-17 | | 5y+8=3y+10 | | -14-11x=-4x | | 1/3=1/11-2x | | 4(6x=12)=-216 | | 4(6x=12)=-26 | | 2y+2=4y+6 | | 2/5=1/30t | | -x-12x=-26 | | 12x+32x=20 | | 21p-7/p=46 | | 10^x+10^x=132 | | 4(x-1.5)=33.96 | | 10^x-10^-x=132 | | G(x)=-x+7 | | 36x+6=2 | | m=9(2,1) | | -3(1+-2n)=63 | | G(x)=-x-6 | | (x+4)(x+4)-25=0 | | 49x^2+23x+4=0 | | 2y+19=10 |